

pySFeel Documentation

the sFeelParse function

	
class pySFeel.SFeelParser

	
	
sFeelParse(text)

	Parse S-FEEL text

This routine parses the passed text, which must be valid S-FEEL

	Parameters

	param1 (str) – The S-FEEL text to be parsed

	Returns

	(status, value)

’status’ is alist of any parsing errors.

’value’ is the Python native value of the parsed S-FEEL text.

For an assignment statement the ‘value’ will be the Python native value assigned to the named variable.

For all other expressions the ‘value’ will be the Python native value of the S-FEEL expression.

	Return type

	tuple

Data Types

pySFeel converts S-FEEL data into the nearest equivalent Python native data type.

	S-Feel data type

	Python native data type

	number

	float

	string

	str

	boolean

	bool

	days and time duration

	datetime.timedelta

	year and months duration

	int

	time

	datetime.time

	date

	datetime.date

	date and time

	datetime.datetime

	List

	list

	Context

	dict

	Range

	tuple(end0, low0, high1, end1)

	
	where end0 is ‘[’ or ‘(’ and end1 is ‘)’ or ‘]’

Literal strings (@”PT5H”) are implemented as both literal strings (@”PT5H”) and as bare strings (PT5H).

@”PT5H” > @”PT4H” can be written as PT5H > PT4H and would return True

NOTE: For safety, enclose ‘codes’ in double quotes.

The ICD-10 code P04D, if not enclosed in double qoutes, will be interpreted as a day and time duration of 4 days.

The AN-SNAP code if 499A will throw a syntax error if not enclosed in double quotes, as ‘499’ will be interpreted as a number that should be followed by an operator.

List and Context Filters

pySFeel supports List and Context filters with one deviation from the standard - the dot operator requires the List to be enclosed in brackets.

Hence, fred.y is not the ‘y’ filter on the List of Contexts named ‘fred’ (as fred.y is a valid name).

However (fred).y is the ‘y’ filter on the List of Contexts named fred.

Assignment and Variable names

There’s one extension - an assignment operator (<-) which will store a Python internal value against a named variable.
Named variables are valid in S-FEEL expressions in pySFeel.

fred <- 7
bill <- 9
fred = bill

This will return False

fred <- [{x:1,y:2},{x:2,y:3}]
(fred).y

This will return [2,3]

Dot operators

All the dot operators are supported, however ‘.time offset’, ‘.start included’ and ‘.end included’ can be ambiguous (because of the embedded space).
Hence the variants ‘.time_offset’, ‘.start_included’, ‘.end_included’ are supported.

thisDateTime.time offset

will fail because thisDateTime.time looks like a valid FEEL variable name. However the following two alternatives will work

thisDateTime.time_offset
(thisDateTime).time offset

Usage

import pySFeel
parser = pySFeel.SFeelParser()
sfeelText = '7.3 in [2.0 .. 9.1]'
(status, retVal) = parser.sFeelParse(sfeelText)
if 'errors' in status:
 print('With errors:', status['errors'])

	retVal will be True

	The dictonary ‘status’ will have the key ‘errors’ if you have errors in your sfeelText.

	status[‘errors’] is a list of strings. It may help in diagnosing your S-FEEL syntax errors.

Built-in Functions

pySFeel has support all the standard FEEL built-in functions with some differences because pySFeel is a Python implementation.

	Name(paramters)

	Parameter Domain

	pySFeel implementation notes

	date(from)

	date string

	Uses dateutil.parser - strict ISO format is not required.
pySFeel will convert a string that is in ISO format into
a datetime.date, datetime.time or datetime.datetime

	date(from)

	date and time

	Truncates datetime.datetime to datetime.date

	date(year,month,day)

	year,month,day
are numbers

	

	date and time(date,time)

	date is a date or
date time; time is
a time

	

	date and time(from)

	date time string

	Uses dateutil.parser - strict ISO format is not required.
pySFeel will convert a string that is in ISO format into
a datetime.date, datetime.time or datetime.datetime

	time(from)

	time string

	Uses dateutil.parser - strict ISO format is not required.
pySFeel will convert a string that is in ISO format into
a datetime.date, datetime.time or datetime.datetime

	time(from)

	time, date and time

	

	number(from,grouping,
separator,decimal separator)

	string,string,
string

	pySFeel does the approriate rounding, but the returned value
is a float. Trailing zeros are not retained.

	string(from)

	non null

	

	duration(from)

	duration string

	

	years and months
duration(from, to)

	both are date or
both are date and
time

	

	not(negand)

	boolean

	

	substring(string,start,
position,length?)

	string,number

	

	string length(string)

	string

	

	upper case(string)

	string

	

	lower case(string)

	string

	

	substring before
(string,match)

	string,string

	

	substring after
(string,match)

	string,string

	

	replace(input,pattern,
replacement,flags?)

	string

	

	contains(string,match)

	string

	

	starts with(string,match)

	string

	

	ends with(string,match)

	string

	

	matches(input,pattern,
flags?)

	string

	

	split(string,delimiter)

	string

	

	list contains(list,element)

	list,any element of
the semantic domain

	

	count(list)

	list

	

	min(list)
min(C1,…,Cn),N>0
max(list)
max(C1,…,Cn),N>0

	non-empty list of
comparable items
or argument list of
one or more
comparable items

	

	sum(list)
sum(N1,…,Nn),N>0

	list of 0 or more
numbers or
argument list of
one or more numbers

	

	mean(list)
mean(N1,…,Nn),N>0

	non-empty list of
numbers or
argument list of
one or more numbers

	

	all(list)
all(B1,…,Bn),N>0

	list of Boolean
items of argument
list of one or more
Boolean items

	

	any(list)
any(B1,…,Bn),N>0

	list of Boolean
items of argument
list of one or more
Boolean items

	

	sublist(list,start position,
length?)

	list,number,
number

	

	append(list,item…)

	list,any element

	

	concatenate(list…)

	list

	

	insert before(list,position,
newItem)

	list,number,any
element

	

	remove(list,position)

	list,number

	

	reverse(list)

	list

	

	index of(list,match)

	list,any element

	

	union(list,…)

	list

	

	distinct values(list)

	list

	

	flattern(list)

	list

	

	product(list)
product(N1,…,Nn)

	list is a list of
numbers. N1..Nn
are numbers

	

	median(list)
median(N1,…,Nn)

	list is a list of
numbers. N1..Nn
are numbers

	

	stddev(list)
stddev(N1,…,Nn)

	list is a list of
numbers. N1..Nn
are numbers

	

	mode(list)
mode(N1,…,Nn)

	list is a list of
numbers. N1..Nn
are numbers

	

	deciman(n,scale)

	number,number

	pySFeel does the approriate rounding, but the returned value
is a float. Trailing zeros are not retained.

	floor(n)

	number

	

	ceiling(n)

	number

	

	abs(n)

	number

	

	modulo(dividend,divisor)

	number,number

	

	sqrt(n)

	number

	

	log(n)

	number

	

	exp(n)

	number

	

	odd(n)

	number

	

	even(n)

	number

	

	is(expr, expr)

	expr, expr

	

	before(range, range)

	range, range

	

	after(range, range)

	range, range

	

	meets(range, range)

	range, range

	

	met by(range, range)

	range, range

	

	overlaps(range, range)

	range, range

	

	overlaps before(range, range)

	range, range

	

	overlaps after(range, range)

	range, range

	

	finishes(range, range)

	range, range

	

	finished by(range, range)

	range, range

	

	includes(range, range)

	range, range

	

	during(range, range)

	range, range

	

	starts(range, range)

	range, range

	

	started by(range, range

	range, range

	

	coincides(range, range)

	range, range

	

	day of year(date)

	date, date and time

	

	day of week(date)

	date, date and time

	

	month of year(date)

	date, date and time

	

	week of year(date)

	date, date and time

	

	sort(list, function(x,y) expr)

	list

	

	now()

	
	

	today()

	
	

Note: The support for the sort() function is very, very limited. Only the anonymous form is supported (function is defined within the sort call).
Also, ‘expr’ is limited to ‘name0 < name1’ or ‘name0 > name1’ (ascending or decending). However, list can be a list of Contexts, in which case
name0 and name1 must be ‘name0.attr’ and ‘name1.attr’ and ‘attr’ must be the same attribute for both ‘name0’ and ‘name1’.

Note: The support for ‘some/every in … satifies expression’ is also limited in that ‘expression’ must be ‘name relop expr’ or ‘odd(name)’ or ‘even(name)’.
Again, the ‘name.attr’ form is suported where a list of Contexts is being tested.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pySFeel	

Index

 P
 | S

P

 	
 	pySFeel (module)

S

 	
 	sFeelParse() (pySFeel.SFeelParser method)

 	
 	SFeelParser (class in pySFeel)

 nav.xhtml

 Table of Contents

 		
 pySFeel Documentation

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

